Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.

Identifieur interne : 002C17 ( Main/Exploration ); précédent : 002C16; suivant : 002C18

Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.

Auteurs : Matthias Fladung [Allemagne] ; Olaf Polak

Source :

RBID : pubmed:22309468

Descripteurs français

English descriptors

Abstract

BACKGROUND

Rapid improvements in the development of new sequencing technologies have led to the availability of genome sequences of more than 300 organisms today. Thanks to bioinformatic analyses, prediction of gene models and protein-coding transcripts has become feasible. Various reverse and forward genetics strategies have been followed to determine the functions of these gene models and regulatory sequences. Using T-DNA or transposons as tags, significant progress has been made by using "Knock-in" approaches ("gain-of-function" or "activation tagging") in different plant species but not in perennial plants species, e.g. long-lived trees. Here, large scale gene tagging resources are still lacking.

RESULTS

We describe the first application of an inducible transposon-based activation tagging system for a perennial plant species, as example a poplar hybrid (P. tremula L. × P. tremuloides Michx.). Four activation-tagged populations comprising a total of 12,083 individuals derived from 23 independent "Activation Tagging Ds" (ATDs) transgenic lines were produced and phenotyped. To date, 29 putative variants have been isolated and new ATDs genomic positions were successfully determined for 24 of those. Sequences obtained were blasted against the publicly available genome sequence of P. trichocarpa v2.0 (Phytozome v7.0; http://www.phytozome.net/poplar) revealing possible transcripts for 17 variants.In a second approach, 300 randomly selected individuals without any obvious phenotypic alterations were screened for ATDs excision. For one third of those transposition of ATDs was confirmed and in about 5% of these cases genes were tagged.

CONCLUSIONS

The novel strategy of first genotyping and then phenotyping a tagging population as proposed here is, in particular, applicable for long-lived, difficult to transform plant species. We could demonstrate the power of the ATDs transposon approach and the simplicity to induce ATDs transposition in vitro. Since a transposon is able to pass chromosomal boundaries, only very few primary transposon-carrying transgenic lines are required for the establishment of large transposon tagging populations. In contrast to T-DNA-based activation tagging, which is plagued by a lack of transformation efficiency and its time consuming nature, this for the first time, makes it feasible one day to tag (similarly to Arabidopsis) every gene within a perennial plant genome.


DOI: 10.1186/1471-2164-13-61
PubMed: 22309468
PubMed Central: PMC3295694


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.</title>
<author>
<name sortKey="Fladung, Matthias" sort="Fladung, Matthias" uniqKey="Fladung M" first="Matthias" last="Fladung">Matthias Fladung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Johann Heinrich von Thuenen-Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Institute of Forest Genetics Sieker Landstr, 2 D-22927 Grosshansdorf Germany. matthias.fladung@vti.bund.de</nlm:affiliation>
<country wicri:rule="zip">Allemagne</country>
<wicri:regionArea>Johann Heinrich von Thuenen-Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:regionArea>
<wicri:noRegion>Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:noRegion>
<wicri:noRegion>Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:noRegion>
<wicri:noRegion>Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polak, Olaf" sort="Polak, Olaf" uniqKey="Polak O" first="Olaf" last="Polak">Olaf Polak</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22309468</idno>
<idno type="pmid">22309468</idno>
<idno type="doi">10.1186/1471-2164-13-61</idno>
<idno type="pmc">PMC3295694</idno>
<idno type="wicri:Area/Main/Corpus">002B42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B42</idno>
<idno type="wicri:Area/Main/Curation">002B42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B42</idno>
<idno type="wicri:Area/Main/Exploration">002B42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.</title>
<author>
<name sortKey="Fladung, Matthias" sort="Fladung, Matthias" uniqKey="Fladung M" first="Matthias" last="Fladung">Matthias Fladung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Johann Heinrich von Thuenen-Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Institute of Forest Genetics Sieker Landstr, 2 D-22927 Grosshansdorf Germany. matthias.fladung@vti.bund.de</nlm:affiliation>
<country wicri:rule="zip">Allemagne</country>
<wicri:regionArea>Johann Heinrich von Thuenen-Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:regionArea>
<wicri:noRegion>Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:noRegion>
<wicri:noRegion>Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:noRegion>
<wicri:noRegion>Forestry and Fisheries Institute of Forest Genetics Sieker Landstr</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polak, Olaf" sort="Polak, Olaf" uniqKey="Polak O" first="Olaf" last="Polak">Olaf Polak</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA Transposable Elements (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Plasmids (genetics)</term>
<term>Plasmids (metabolism)</term>
<term>Populus (genetics)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Génome végétal (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Plasmides (génétique)</term>
<term>Plasmides (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Température (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Éléments transposables d'ADN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Transposable Elements</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plasmids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Plasmides</term>
<term>Populus</term>
<term>Éléments transposables d'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Génotype</term>
<term>Phénotype</term>
<term>Température</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Rapid improvements in the development of new sequencing technologies have led to the availability of genome sequences of more than 300 organisms today. Thanks to bioinformatic analyses, prediction of gene models and protein-coding transcripts has become feasible. Various reverse and forward genetics strategies have been followed to determine the functions of these gene models and regulatory sequences. Using T-DNA or transposons as tags, significant progress has been made by using "Knock-in" approaches ("gain-of-function" or "activation tagging") in different plant species but not in perennial plants species, e.g. long-lived trees. Here, large scale gene tagging resources are still lacking.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We describe the first application of an inducible transposon-based activation tagging system for a perennial plant species, as example a poplar hybrid (P. tremula L. × P. tremuloides Michx.). Four activation-tagged populations comprising a total of 12,083 individuals derived from 23 independent "Activation Tagging Ds" (ATDs) transgenic lines were produced and phenotyped. To date, 29 putative variants have been isolated and new ATDs genomic positions were successfully determined for 24 of those. Sequences obtained were blasted against the publicly available genome sequence of P. trichocarpa v2.0 (Phytozome v7.0; http://www.phytozome.net/poplar) revealing possible transcripts for 17 variants.In a second approach, 300 randomly selected individuals without any obvious phenotypic alterations were screened for ATDs excision. For one third of those transposition of ATDs was confirmed and in about 5% of these cases genes were tagged.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The novel strategy of first genotyping and then phenotyping a tagging population as proposed here is, in particular, applicable for long-lived, difficult to transform plant species. We could demonstrate the power of the ATDs transposon approach and the simplicity to induce ATDs transposition in vitro. Since a transposon is able to pass chromosomal boundaries, only very few primary transposon-carrying transgenic lines are required for the establishment of large transposon tagging populations. In contrast to T-DNA-based activation tagging, which is plagued by a lack of transformation efficiency and its time consuming nature, this for the first time, makes it feasible one day to tag (similarly to Arabidopsis) every gene within a perennial plant genome.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22309468</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.</ArticleTitle>
<Pagination>
<MedlinePgn>61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-61</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Rapid improvements in the development of new sequencing technologies have led to the availability of genome sequences of more than 300 organisms today. Thanks to bioinformatic analyses, prediction of gene models and protein-coding transcripts has become feasible. Various reverse and forward genetics strategies have been followed to determine the functions of these gene models and regulatory sequences. Using T-DNA or transposons as tags, significant progress has been made by using "Knock-in" approaches ("gain-of-function" or "activation tagging") in different plant species but not in perennial plants species, e.g. long-lived trees. Here, large scale gene tagging resources are still lacking.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We describe the first application of an inducible transposon-based activation tagging system for a perennial plant species, as example a poplar hybrid (P. tremula L. × P. tremuloides Michx.). Four activation-tagged populations comprising a total of 12,083 individuals derived from 23 independent "Activation Tagging Ds" (ATDs) transgenic lines were produced and phenotyped. To date, 29 putative variants have been isolated and new ATDs genomic positions were successfully determined for 24 of those. Sequences obtained were blasted against the publicly available genome sequence of P. trichocarpa v2.0 (Phytozome v7.0; http://www.phytozome.net/poplar) revealing possible transcripts for 17 variants.In a second approach, 300 randomly selected individuals without any obvious phenotypic alterations were screened for ATDs excision. For one third of those transposition of ATDs was confirmed and in about 5% of these cases genes were tagged.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The novel strategy of first genotyping and then phenotyping a tagging population as proposed here is, in particular, applicable for long-lived, difficult to transform plant species. We could demonstrate the power of the ATDs transposon approach and the simplicity to induce ATDs transposition in vitro. Since a transposon is able to pass chromosomal boundaries, only very few primary transposon-carrying transgenic lines are required for the establishment of large transposon tagging populations. In contrast to T-DNA-based activation tagging, which is plagued by a lack of transformation efficiency and its time consuming nature, this for the first time, makes it feasible one day to tag (similarly to Arabidopsis) every gene within a perennial plant genome.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fladung</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Johann Heinrich von Thuenen-Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Institute of Forest Genetics Sieker Landstr, 2 D-22927 Grosshansdorf Germany. matthias.fladung@vti.bund.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polak</LastName>
<ForeName>Olaf</ForeName>
<Initials>O</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22309468</ArticleId>
<ArticleId IdType="pii">1471-2164-13-61</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-61</ArticleId>
<ArticleId IdType="pmc">PMC3295694</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechniques. 2000 Jun;28(6):1128 1130, 1132, 1134 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10868278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2000 Apr;11(2):157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Dec;11(12):2263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Sep;50(1):93-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12139012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 May 15;163(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2441623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(2):301-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Apr;33(6):1097-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9154991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18185941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Apr;122(4):1003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):189-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Nov 20;258(5086):1350-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1455228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;678:91-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20931375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Sep;8(3):457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7550382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2009 Nov;51(11):982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Feb;231(3):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1538691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1999 Dec;8(12):2137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10632865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):351-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17120135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jun;82(11):3726-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(10):2549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Jul;109(2):333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(5):682-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):5-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Mar;51(5):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12678553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):459-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Dec;108(1):10-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2004 Oct;4(4):258-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15156357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 May 15;414(1-2):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jan;45(2):123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11289504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jun;64(3):329-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Jan;260(6):574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;678:107-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20931376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Polak, Olaf" sort="Polak, Olaf" uniqKey="Polak O" first="Olaf" last="Polak">Olaf Polak</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Fladung, Matthias" sort="Fladung, Matthias" uniqKey="Fladung M" first="Matthias" last="Fladung">Matthias Fladung</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22309468
   |texte=   Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22309468" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020